Moving Average Dieses Beispiel lehrt, wie Sie den gleitenden Durchschnitt einer Zeitreihe in Excel berechnen. Eine bewegte Avearge wird verwendet, um Unregelmäßigkeiten (Spitzen und Täler) zu glätten, um Trends leicht zu erkennen. 1. Erstens, werfen wir einen Blick auf unsere Zeitreihe. 2. Klicken Sie auf der Registerkarte Daten auf Datenanalyse. Hinweis: Klicken Sie hier, um das Analyse-ToolPak-Add-In zu laden. 3. Wählen Sie Verschiebender Durchschnitt aus, und klicken Sie auf OK. 4. Klicken Sie in das Feld Eingabebereich und wählen Sie den Bereich B2: M2. 5. Klicken Sie in das Feld Intervall und geben Sie 6 ein. 6. Klicken Sie in das Feld Ausgabebereich und wählen Sie Zelle B3 aus. 8. Zeichnen Sie ein Diagramm dieser Werte. Erläuterung: Da wir das Intervall auf 6 setzen, ist der gleitende Durchschnitt der Durchschnitt der letzten 5 Datenpunkte und der aktuelle Datenpunkt. Als Ergebnis werden Spitzen und Täler geglättet. Die Grafik zeigt eine zunehmende Tendenz. Excel kann den gleitenden Durchschnitt für die ersten 5 Datenpunkte nicht berechnen, da nicht genügend frühere Datenpunkte vorhanden sind. 9. Wiederholen Sie die Schritte 2 bis 8 für Intervall 2 und Intervall 4. Fazit: Je größer das Intervall, desto mehr werden die Spitzen und Täler geglättet. Je kleiner das Intervall, desto näher sind die gleitenden Mittelwerte bis zu den tatsächlichen Datenpunkten. Hinzufügen eines Trends oder einer gleitenden Durchschnittszeile zu einem Diagramm Betrifft: Excel 2016 Word 2016 PowerPoint 2016 Word 2013 Outlook 2013 PowerPoint 2013 Mehr. Weniger Zeigt Datentrends oder gleitende Durchschnitte in einem von Ihnen erstellten Diagramm an. Können Sie eine Trendlinie hinzufügen. Sie können auch eine Trendlinie über Ihre tatsächlichen Daten hinaus erweitern, um zukünftige Werte vorherzusagen. So prognostiziert die folgende lineare Trendlinie zwei Quartale voraus und zeigt deutlich einen Aufwärtstrend, der für den zukünftigen Umsatz vielversprechend aussieht. Sie können eine Trendlinie zu einem 2-D Diagramm hinzufügen, das nicht gestapelt wird, einschließlich Bereich, Stab, Spalte, Linie, Vorrat, Streuung und Luftblase. Sie können keine Trendlinie zu einem gestapelten, 3-D-, Radar-, Kuchen-, Oberflächen - oder Donut-Diagramm hinzufügen. Hinzufügen einer Trendlinie Klicken Sie in Ihrem Diagramm auf die Datenreihe, zu der Sie eine Trendlinie oder einen gleitenden Durchschnitt hinzufügen möchten. Die Trendlinie beginnt am ersten Datenpunkt der gewählten Datenreihe. Aktivieren Sie das Kontrollkästchen Trendline. Um einen anderen Trendlinienbereich zu wählen, klicken Sie auf den Pfeil neben Trendline. Und klicken Sie dann auf Exponential. Lineare Vorhersage. Oder Zwei Periodenbewegungsdurchschnitt. Klicken Sie für weitere Trendlinien auf Weitere Optionen. Wenn Sie Mehr Optionen wählen. Klicken Sie unter Trendlinienoptionen im Fenster "Trendlinie formatieren" auf die gewünschte Option. Wenn Sie Polynom wählen. Geben Sie die höchste Leistung für die unabhängige Variable im Feld Auftrag ein. Wenn Sie Moving Average wählen. Geben Sie die Anzahl der Perioden ein, die verwendet werden, um den gleitenden Durchschnitt im Feld Zeitraum zu berechnen. Tipp: Eine Trendlinie ist am genauesten, wenn ihr R-Quadratwert (eine Zahl von 0 bis 1, die angibt, wie genau die Schätzwerte für die Trendlinie mit Ihren tatsächlichen Daten übereinstimmen) auf oder nahe bei 1. Wenn Sie eine Trendlinie zu Ihren Daten hinzufügen , Berechnet Excel automatisch seinen R-Quadrat-Wert. Sie können diesen Wert in Ihrem Diagramm anzeigen, indem Sie den Wert "R-Quadrat anzeigen" im Diagrammfenster (Bereich "Trendlinie", "Trendlinienoptionen") anzeigen. In den folgenden Abschnitten erfahren Sie mehr über alle Trendlinienoptionen. Lineare Trendlinie Verwenden Sie diese Art von Trendlinie, um eine optimale Gerade für einfache lineare Datensätze zu erstellen. Ihre Daten sind linear, wenn das Muster in seinen Datenpunkten wie eine Linie aussieht. Eine lineare Trendlinie zeigt in der Regel, dass etwas mit steiler Geschwindigkeit steigt oder sinkt. Eine lineare Trendlinie verwendet diese Gleichung zur Berechnung der kleinsten Quadrate, die für eine Linie passen: wobei m die Steigung und b der Intercept ist. Die folgende lineare Trendlinie zeigt, dass die Verkäufe der Kühlschränke über einen Zeitraum von 8 Jahren kontinuierlich zugenommen haben. Beachten Sie, dass der R-squared-Wert (eine Zahl von 0 bis 1, die angibt, wie genau die Schätzwerte für die Trendlinie Ihren tatsächlichen Daten entsprechen) 0,9792 ist, was eine gute Übereinstimmung der Zeile zu den Daten ist. Diese Trendlinie ist nützlich, wenn die Rate der Änderung in den Daten schnell ansteigt oder abnimmt und dann abnimmt. Eine logarithmische Trendlinie kann negative und positive Werte verwenden. Eine logarithmische Trendlinie verwendet diese Gleichung zur Berechnung der kleinsten quadratischen Anpassung durch Punkte: wobei c und b Konstanten sind und ln die natürliche Logarithmusfunktion ist. Die folgende logarithmische Trendlinie zeigt das vorhergesagte Bevölkerungswachstum von Tieren in einem festen Raum, in dem die Population ausgeglichen wurde, als der Platz für die Tiere abnahm. Beachten Sie, dass der R-Quadrat-Wert 0,933 ist, was eine relativ gute Passung der Zeile zu den Daten ist. Diese Trendlinie ist nützlich, wenn Ihre Daten schwanken. Zum Beispiel, wenn Sie Gewinne und Verluste über einen großen Datensatz analysieren. Die Reihenfolge des Polynoms kann durch die Anzahl der Fluktuationen in den Daten oder durch die Anzahl der Biegungen (Hügel und Täler) in der Kurve bestimmt werden. Typischerweise hat eine Order-2-Polynom-Trendlinie nur einen Hügel oder ein Tal, eine Order 3 hat ein oder zwei Hügel oder Täler und eine Order 4 hat bis zu drei Hügeln oder Tälern. Eine polynomische oder krummlinige Trendlinie nutzt diese Gleichung, um die kleinsten Quadrate durch Punkte zu berechnen: wobei b und Konstanten sind. Die folgende Polynom-Trendlinie (ein Hügel) der Ordnung 2 zeigt die Beziehung zwischen Fahrgeschwindigkeit und Kraftstoffverbrauch. Beachten Sie, dass der R-Quadrat-Wert 0,979 ist, was nahe bei 1 liegt, so dass die Linien eine gute Anpassung an die Daten aufweisen. Diese Trendlinie, die eine gekrümmte Linie zeigt, ist für Datensätze nützlich, die Messungen vergleichen, die mit einer bestimmten Rate zunehmen. Zum Beispiel die Beschleunigung eines Rennwagens im 1-Sekunden-Intervall. Sie können keine Power-Trendline erstellen, wenn Ihre Daten Null - oder negative Werte enthalten. Eine Leistungs-Trendlinie verwendet diese Gleichung, um die kleinsten Quadrate durch Punkte zu berechnen: wobei c und b Konstanten sind. Hinweis: Diese Option ist nicht verfügbar, wenn Ihre Daten negative oder Nullwerte enthalten. Die folgende Distanzmesskarte zeigt den Abstand in Metern pro Sekunde an. Die Leistung Trendlinie zeigt deutlich die zunehmende Beschleunigung. Beachten Sie, dass der R-Quadrat-Wert 0,986 ist, was eine nahezu perfekte Passung der Zeile zu den Daten ist. Diese Kurve zeigt eine gekrümmte Linie, wenn Datenwerte mit stetig steigenden Werten steigen oder fallen. Sie können keine exponentielle Trendlinie erstellen, wenn Ihre Daten Null - oder negative Werte enthalten. Eine exponentielle Trendlinie nutzt diese Gleichung, um die kleinsten Quadrate durch Punkte zu berechnen: wobei c und b Konstanten sind und e die Basis des natürlichen Logarithmus ist. Die folgende exponentielle Trendlinie zeigt die abnehmende Menge an Kohlenstoff 14 in einem Objekt, während es altert. Beachten Sie, dass der R-Quadrat-Wert 0.990 ist, was bedeutet, dass die Linie die Daten nahezu perfekt passt. Moving Average trendline Diese Trendlinie gleicht Schwankungen in den Daten aus, um ein Muster oder einen Trend deutlicher darzustellen. Ein gleitender Durchschnitt verwendet eine bestimmte Anzahl von Datenpunkten (die durch die Option "Periode" festgelegt wurden), sie mittelt sie und verwendet den Durchschnittswert als Punkt in der Zeile. Wenn beispielsweise Period auf 2 gesetzt ist, wird der Durchschnitt der ersten beiden Datenpunkte als erster Punkt in der gleitenden durchschnittlichen Trendlinie verwendet. Der Mittelwert der zweiten und dritten Datenpunkte wird als zweiter Punkt in der Trendlinie usw. verwendet. Eine gleitende durchschnittliche Trendlinie verwendet diese Gleichung: Die Anzahl der Punkte in einer gleitenden durchschnittlichen Trendlinie entspricht der Gesamtzahl der Punkte in der Reihe minus Die Sie für den Zeitraum angeben. In einem Streudiagramm basiert die Trendlinie auf der Reihenfolge der x-Werte im Diagramm. Für ein besseres Ergebnis sortieren Sie die x-Werte, bevor Sie einen gleitenden Durchschnitt hinzufügen. Die folgende gleitende durchschnittliche Trendlinie zeigt ein Muster in der Zahl der Häuser, die über einen Zeitraum von 26 Wochen verkauft werden. Moving Average Forecasting Introduction. Wie Sie vermutlich schauen, betrachten wir einige der primitivsten Ansätze zur Prognose. Aber hoffentlich sind diese zumindest eine lohnende Einführung in einige der Rechenprobleme im Zusammenhang mit der Umsetzung von Prognosen in Tabellenkalkulationen. In diesem Sinne werden wir von Anfang an beginnen und beginnen mit Moving Average Prognosen zu arbeiten. Gleitende durchschnittliche Prognosen. Jeder ist vertraut mit gleitenden durchschnittlichen Prognosen, unabhängig davon, ob sie glauben, sie sind. Alle Studenten tun sie die ganze Zeit. Denken Sie an Ihre Testergebnisse in einem Kurs, in dem Sie vier Tests während des Semesters haben werden. Angenommen, Sie haben eine 85 auf Ihrem ersten Test. Was würden Sie vorhersagen, für Ihre zweite Test-Score Was glauben Sie, Ihr Lehrer würde für Ihre nächste Test-Punkt vorhersagen Was denken Sie, Ihre Freunde könnten für Ihre nächste Test-Punkt vorherzusagen Was denken Sie, Ihre Eltern könnten für Ihre nächste Test-Score Unabhängig davon vorhersagen Alle die blabbing Sie tun könnten, um Ihre Freunde und Eltern, sie und Ihr Lehrer sind sehr wahrscheinlich zu erwarten, dass Sie etwas im Bereich der 85 erhalten Sie gerade bekommen. Nun, jetzt gehen wir davon aus, dass trotz Ihrer Selbst-Förderung an Ihre Freunde, Sie über-schätzen Sie sich und Figur, die Sie weniger für den zweiten Test lernen können und so erhalten Sie eine 73. Nun, was sind alle betroffenen und unbekümmerten gehen Erwarten Sie erhalten auf Ihrem dritten Test Es gibt zwei sehr wahrscheinlich Ansätze, damit sie eine Schätzung unabhängig davon entwickeln, ob sie es mit Ihnen teilen. Sie können zu sich selbst sagen, dieser Kerl ist immer bläst Rauch über seine smarts. Hes gehend, ein anderes 73 zu erhalten, wenn hes glücklich. Vielleicht werden die Eltern versuchen, mehr unterstützend und sagen, quotWell, so weit youve bekommen eine 85 und eine 73, so vielleicht sollten Sie auf eine über (85 73) 2 79. Ich weiß nicht, vielleicht, wenn Sie weniger feiern Und werent wedelte das Wiesel ganz über dem Platz und wenn Sie anfingen, viel mehr zu studieren, konnten Sie einen höheren score. quot erhalten. Beide dieser Schätzungen sind wirklich gleitende durchschnittliche Prognosen. Der erste verwendet nur Ihre jüngste Punktzahl, um Ihre zukünftige Leistung zu prognostizieren. Dies wird als gleitende Durchschnittsprognose mit einer Datenperiode bezeichnet. Die zweite ist auch eine gleitende durchschnittliche Prognose, aber mit zwei Perioden von Daten. Nehmen wir an, dass alle diese Leute, die auf deinem großen Verstand zerschmettern, Art von dich angepisst haben und du entscheidest, auf dem dritten Test aus deinen eigenen Gründen gut zu tun und eine höhere Kerbe vor deinen quotalliesquot zu setzen. Sie nehmen den Test und Ihre Gäste ist eigentlich ein 89 Jeder, einschließlich selbst, ist beeindruckt. So jetzt haben Sie die abschließende Prüfung des Semesters herauf und wie üblich spüren Sie die Notwendigkeit, alle in die Vorhersagen zu machen, wie youll auf dem letzten Test tun. Nun, hoffentlich sehen Sie das Muster. Nun, hoffentlich können Sie das Muster sehen. Was glauben Sie, ist die genaueste Pfeife, während wir arbeiten. Nun kehren wir zu unserer neuen Reinigungsfirma zurück, die von Ihrer entfremdeten Halbschwester namens Whistle While We Work begonnen wurde. Sie haben einige vergangene Verkaufsdaten, die durch den folgenden Abschnitt aus einer Kalkulationstabelle dargestellt werden. Zuerst präsentieren wir die Daten für eine dreidimensionale gleitende Durchschnittsprognose. Der Eintrag für Zelle C6 sollte jetzt sein Sie können diese Zellformel auf die anderen Zellen C7 bis C11 kopieren. Beachten Sie, wie der Durchschnitt bewegt sich über die jüngsten historischen Daten, sondern verwendet genau die drei letzten Perioden zur Verfügung für jede Vorhersage. Sie sollten auch bemerken, dass wir nicht wirklich brauchen, um die Vorhersagen für die vergangenen Perioden zu machen, um unsere jüngste Vorhersage zu entwickeln. Dies ist definitiv anders als das exponentielle Glättungsmodell. Ive eingeschlossen das quotpast predictionsquot, weil wir sie auf der folgenden Webseite verwenden, um Vorhersagegültigkeit zu messen. Nun möchte ich die analogen Ergebnisse für eine zwei-Periode gleitenden Durchschnitt Prognose zu präsentieren. Der Eintrag für Zelle C5 sollte jetzt sein Sie können diese Zellformel auf die anderen Zellen C6 bis C11 kopieren. Beachten Sie, wie jetzt nur die beiden letzten Stücke der historischen Daten für jede Vorhersage verwendet werden. Wieder habe ich die quotpast Vorhersagequot für illustrative Zwecke und für die spätere Verwendung in der Prognose Validierung enthalten. Einige andere Dinge, die wichtig zu beachten sind. Für eine m-Periode gleitende Durchschnittsprognose werden nur die m neuesten Datenwerte verwendet, um die Vorhersage durchzuführen. Nichts anderes ist notwendig. Für eine m-Periode gleitende durchschnittliche Prognose, wenn Sie Quotpast Vorhersagequot, beachten Sie, dass die erste Vorhersage tritt im Zeitraum m 1 auf. Diese beiden Fragen werden sehr wichtig sein, wenn wir unseren Code entwickeln. Entwicklung der Moving Average Funktion. Nun müssen wir den Code für die gleitende Durchschnittsprognose entwickeln, die flexibler genutzt werden kann. Der Code folgt. Beachten Sie, dass die Eingaben für die Anzahl der Perioden sind, die Sie in der Prognose und dem Array von historischen Werten verwenden möchten. Sie können es in beliebiger Arbeitsmappe speichern. Funktion MovingAverage (Historical, NumberOfPeriods) als einzelne Deklarations - und Initialisierungsvariablen Dim Item als Variant Dim Zähler als Integer Dim Summe als Single Dim HistoricalSize als Integer Initialisierung von Variablen Zähler 1 Akkumulation 0 Festlegung der Größe des Historical Arrays HistoricalSize Historical. Count For Counter 1 bis NumberOfPeriods Summieren der entsprechenden Anzahl der zuletzt beobachteten Werte Accumulation Accumulation Historical (HistoricalSize - NumberOfPeriods Counter) MovingAverage Accumulation NumberOfPeriods Der Code wird in der Klasse erklärt. Sie möchten die Funktion auf dem Arbeitsblatt platzieren, so dass das Ergebnis der Berechnung angezeigt wird, wo es wie folgt sein soll.
No comments:
Post a Comment